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ABSTRACT: This review explores machine learning approaches for
predicting ignition delay in combustion processes. Ignition delay is a
vital parameter in optimizing the engine design, fuel formulations, and
combustion efficiency. The review examines the applications of artificial
neural networks (ANNs) and convolutional neural networks (CNNs) in
various combustion processes and equipment, such as engines, boilers,
and rapid compression machines. The differences between ANNs and
CNNs are discussed, highlighting their capabilities and limitations.
Numerous studies are presented, demonstrating the successful
application of neural networks in predicting ignition delay for different
fuels and engines. Overall, machine learning approaches show great
promise in accurately predicting the ignition delay and advancing
energy utilization.

1. INTRODUCTION
A segment of the scientific community is actively exploring
alternatives to hydrocarbon-based fuels in order to address the
growing global energy demand. Nonetheless, carbon-based
fuels are anticipated to remain the predominant and reliable
sources of energy for the foreseeable future. Another promising
approach involves the optimization of existing combustion
technologies, as substantial endeavors have been dedicated to
enhancing the efficiency of fossil fuel utilization. In the pursuit
of this objective, a comprehensive understanding of
combustion characteristics is imperative. To gain such insights,
several experimental investigations and numerical studies,
including zero-dimensional (0-D) and three-dimensional (3-
D) modeling, have been undertaken.
In recent decades, neural networks have emerged as

powerful tools for addressing a wide array of complex scientific
challenges, drawing inspiration from principles governing the
human mind. This development holds great promise for the
research community, offering the potential for highly accurate
simulations that demand significantly reduced execution times
and computational resources compared to traditional methods.
Neural networks have already demonstrated their utility in
effectively simulating diverse combustion processes and
equipment including but not limited to spark ignition engines,1

compression ignition engine,2 chemical kinetics,3 optical
diagnostics,4 gas turbine,5 boilers,6 burners,7 rapid compres-
sion machines (RCMs),8 and shock tubes.9

A thorough comprehension of ignition delay allows
engineers and researchers to optimize engine design and fuel
formulations, leading to more efficient and environmentally

friendly combustion processes. Moreover, ignition delay plays
a significant role in ensuring engine safety, preventing knock or
detonation and promoting stable combustion, all of which are
vital for the automotive and energy sectors. Consequently, a
deep understanding of the ignition delay is fundamental for
advancing technology and achieving more sustainable and
efficient energy utilization. A large amount of experimental and
numerical research has been performed to understand the
combustion and autoignition processes.10−12

The concept of ignition delay carries various definitions
contingent on the specific application. It can be defined as the
time period between the moment of end of compression stroke
and the moment of pressure gradient local maxima as
illustrated in Figure 1. It also can include multiple stages
based on the sensitivity of the fuel and the physics of the
phenomenon. This definition is useful in compression−
ignition engines. In the context of spark-ignition engines, the
ignition delay can also be defined as the time from spark
initiation to the time when 10% of the mass is burned. Figure 1
describes the ignition delay, which is well-suited for premixed
fuel/oxidizer blends commonly utilized in rapid compression
machines. In the context of combustion devices, such as
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compression ignition engines, where fuel is introduced into
oxidizer during compression, ignition delay is conventionally
defined as the duration from the initiation of fuel injection to
the moment of ignition (specifically, the peaks of local pressure
gradient). This comprehensive definition of ignition delay
encompasses both physical delays (such as liquid spray
breakup and droplet vaporization) and chemical delays
involving fuel oxidization and pyrolysis.
On the other side, machine learning constitutes a subset

within the realm of artificial intelligence, concentrating on
crafting algorithms and statistical models. These tools
empower computers to acquire knowledge, enabling them to
make predictions or decisions that are devoid of explicit
programming tailored to specific tasks. Machine learning
methods have a wide range of applications, including but not
limited to image and speech recognition,13 natural language
processing and text analysis,14 recommendation systems (e.g.,
personalized product recommendations),15 autonomous ve-
hicles,16 robotics,17 healthcare (e.g., disease diagnosis and drug
discovery),18 financial modeling,19 fraud detection,20 predictive
maintenance,21 climate forecasting,22 and so on.
A neural network serves as a computational model, drawing

inspiration from the structural and functional attributes of
biological neural networks, notably those observed in the
human brain. Neural networks are a fundamental component
of deep learning, a subfield of machine learning that focuses on
training deep and complex neural networks. A neural network
is comprised of interlinked nodes referred to as neurons,
whether biological or artificial in nature, systematically
arranged into distinct layers. These layers conventionally
encompass an input layer, one or more hidden layers, and an
output layer. These layers typically include an input layer, one
or more hidden layers, and an output layer. Here is definition
of some of its basic concepts:23

• Input Layer: the input layer receives the initial data or
features (experimental or numerical) that are fed into
the neural network. Each neuron in the input layer
corresponds to a physical parameter of the data.

• Hidden Layers: Between the input and output layers,
there can be one or more hidden layers. These hidden
layers perform intermediate computations and are
responsible for learning complex patterns and represen-
tations in the data. Each neuron in a hidden layer is

connected to neurons in the previous and subsequent
layers.

• Output Layer: The output layer generates the outcome
or prediction, a consequence of computations conducted
by the hidden layers. The quantity of neurons within the
output layer is contingent upon the unique requirements
of the given task, such as classification (where each
neuron represents a class) or regression (where each
neuron represents a numerical value).

• Weights and Biases: each connection between neurons
in adjacent layers has an associated weight, which
determines the strength of the connection. Additionally,
each neuron typically has an associated bias, which helps
in adjusting the neuron’s output. These weights and
biases are learned during the training process.

• Activation Functions: activation functions are used in
neural networks to introduce nonlinearity into the
model. Nonlinearity is essential for capturing complex
relationships in the data. Common activation functions
include the sigmoid function, ReLU (Rectified Linear
Unit), and tanh (hyperbolic tangent).

• Training: training a neural network involves the process
of learning from input data. The network makes
predictions, and the error or loss between its predictions
and the actual target values is computed. The back-
propagation algorithm is then used to update the
weights and biases of the network to minimize this
error. This process is repeated iteratively until the
network’s performance on the training data reaches an
acceptable level.

Neural networks can be categorized into several main types
based on their architectural characteristics and the types of
problems they are designed to solve. The two most important
categories are artificial neural networks (ANNs) and convolu-
tional neural networks (CNNs). Each of these has specific
capabilities and limitations. Their differences are summarized
in Table 1.
In summary, ANNs are more general-purpose neural

network architectures that can be applied to a wide range of
tasks. On the other hand, CNNs are specialized for tasks
involving grid-like data, particularly image-related tasks. When
working with images, CNNs are often the preferred choice due
to their ability to automatically learn hierarchical features from
raw pixel data, reducing the need for manual feature
engineering. In this review, the focus was placed on the
capabilities and recent advancements of ANNs and CNNs in
ignition delay prediction. A general introduction on ignition
delay and neural networks has already been presented. The
application of ANNs and CNNs in ignition delay prediction is
presented in the next two sections. The important studies, their
methodology, and results will be discussed.

2. APPLICATION OF AN ARTIFICIAL NEURAL
NETWORK IN IGNITION DELAY PREDICTION

The pioneering work on employing neural networks to forecast
the ignition delay of diesel fuel was introduced by Basu et al.24

in 2003. They analyzed 60 commercial diesel samples by using
an ignition quality tester (IQT). These experimental results,
coupled with specific input parameters, were employed to train
the ANN model with Statistica software serving as the
computational tool. The outcome of their research demon-
strated a remarkably strong correlation between the predicted

Figure 1. Pressure and pressure gradient of the n-heptane/oxygen/
nitrogen mixture. The compressed gas temperature was 633 K, and
the compressed gas pressure was 13.5 bar.12 Reproduced or adapted
with permission from.12 Copyright [2021] [ACS].
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and observed cetane numbers, affirming the efficacy of the
ANN-based approach in predicting the ignition delay for diesel
fuels.
Choi and Chen25 aimed to integrate a semiempirical model

designed for predicting ignition delay in an HCCI (Homoge-
neous Charge Compression Ignition) engine with an ANN
model to forecast the start of combustion (SOC). The ANN
model was trained through the back-propagation algorithm
with temperature (790−1270 K), pressure (1−45 atm),
equivalence ratio (0.2−1.0), and EGR (exhaust gas recircula-
tion) percentage (0−60%) as inputs. In their ANN
architecture, a configuration is explored comprising one or
two hidden layers and an output layer featuring a single node
to represent the ignition delay, as depicted in Figure 2.

Achieving accuracy in the ANN model necessitates fine-tuning
of several key parameters. These parameters encompass factors
such as the epoch size, the quantity of nodes within the hidden
layer, and the frequency at which testing is conducted during
training, as quantified by the number of epochs between tests.
They found out that the model is capable of providing
reasonably accurate predictions of the SOC. It was also found
to be much faster than a detailed chemistry solution.
Another interesting study was performed by Kannan et al.26

They developed an ANN model using injection pressure
(220−300 bar) and injection timing (23−28 obTDC) as
inputs to predict several important combustion performance
and emissions parameters, including ignition delay of a diesel
engine that was burning waste cooking palm oil-based
biodiesel. They first performed a series of experiments in a
single cylinder, four-stroke direct injection diesel engine. The
engine was run at full load condition and a constant speed of
1500 rpm to train the ANN model by using the experimental
data based on the back-propagation learning algorithm. They
observed that the ANN model predicts the target character-
istics very accurately.
Rezaei et al.27 used experimental data of an HCCI engine to

train a feed-forward ANN model by two inputs of butanol
volume percentage (6−48.5%) and equivalence ratio (0.30−
0.43%) and seven outputs of IMEP (indicated mean effective
pressure), indicated thermal efficiency, net total heat released,
maximum in-cylinder pressure, total hydrocarbon, NOx, and
CO. They observed that the ANN model predicts HCCI
engine performance metrics with less than 4% error (Figure 3).
Huang et al.28 employed machine learning methods to

predict ignition delay of a Jet A-1/hydrogen fuel mixture in a
single cylinder heavy duty research compression ignition (CI)
engine to reduce the time and cost of experimentations in a
wide range of operational conditions including pressure (1.0−T
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Figure 2. Back-propagation artificial neural network with two hidden
layers.25 Reproduced or adapted with permission from.25 Copyright
[2005] [Elsevier].
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20.0 atm), temperature (800−1600 K), equivalence ratio
(0.5−1.5), and blending molar ratio of hydrogen (0−0.5). To
this end, first, they simulated ignition delay times using the
HyChem (hybrid chemistry)29 reaction mechanism.
Following validation against experimental data, an ANN

model was trained using a database of ignition delay times.
Additionally, a sub-ANN was incorporated into the primary
ANN model to enhance the performance under specific local
conditions. A comparison of their predicted ignition delay
versus the simulated ones at different test conditions is shown
in Figure 4. The basic ANN model, featuring five hidden
layers, demonstrated proficient predictions of ignition delay
times, yielding a mean relative error of 1%. Nonetheless, under

specific conditions characterized by short ignition delays, the
maximum local relative error was extended up to 10%. The
introduced nested sub-ANN methodology effectively mitigates
the maximum local relative error associated with ANN
predictions to levels below 5%. Notably, the proposed data-
driven ANN approaches exhibit a computational efficiency
approximately 1000 times greater than that of the HyChem
simulation method in the context of ignition delay prediction.
In their study, Van Tuan and colleagues30 harnessed artificial

neural networks (ANNs) and support vector machine (SVM)
techniques to forecast ignition delay in a single-cylinder
compression-ignition engine, focusing on both diesel and
biodiesel fuels. To develop their predictive models, they
employed a training data set comprising more than 700
experimental data points. The input layer of their models
featured four neurons, representing the biodiesel ratio,
pressure, temperature, and equivalence ratio. The outcomes
of their analysis, which involved training and assessing model
accuracy, demonstrated that the SVM model outperformed the
ANN model in predicting the ignition delay with greater
precision.
Nagaraja and Sarathy31 developed an artificial neural

network to predict ignition delay of natural gas in a
homogeneous charge compression ignition engine. The
model consists of 13 inputs and utilizes three hidden layers
during training, employing a backpropagation approach. To
optimize the network architecture, a grid search was conducted
to tune the hyperparameters. Each hidden layer of the model
contains 1024 nodes, while the output layer contains a single
node. In order to prevent overfitting, a dropout fraction of 0.2
is applied to each hidden layer. The database is divided into

Figure 3. Predicted values by using an ANN model for an HCCI engine versus the experimental data for a) IMEP, b) net total heat released, c)
maximum in-cylinder pressure, and d) total hydrocarbon.27 Reproduced or adapted with permission from.27 Copyright [2015] [Elsevier].

Figure 4. Simulated ignition delays versus the basic ANN
predictions.28 Reproduced or adapted with permission from.28

Copyright [2022] [Sage].
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60% training data, 20% validation data, and 20% test data. The
model was trained using the Keras library with the TensorFlow
package.32

The inputs were scaled using the standard scaler from the
scikit-learn package.33 The activation function “ReLu” was
applied to all hidden layers. For optimization, the Adam
optimizer was utilized with a learning rate of 0.0001 and a
batch size of 10. The model underwent training for a total of
1000 epochs. The results indicate that the developed model
outperforms a multiple linear regression approach and is
validated through shock tube experiments.

3. APPLICATION OF CONVOLUTIONAL NEURAL
NETWORKS IN IGNITION DELAY PREDICTION

Popov et al.34 demonstrated an intriguing use of convolutional
neural networks (CNNs) in the field of combustion. Their

study involved a low-speed wind tunnel, where a flush-
mounted jet was directed perpendicularly from the tunnel wall
into a turbulent boundary layer. Within this setting, they
created a laser-induced optical breakdown (LIB) hotspot.
Initially, a comprehensive hydrogen chemical model was
employed to simulate the behavior of the radicals and any
ensuing chemical reactions. Subsequently, the obtained results
were utilized for the training of a CNN model, as depicted in
Figure 5.
The CNN model follows a layer-by-layer structure using

Keras terminology.35 The initial layer, known as the input
layer, accepts a 150 × 50 × 15 input array, representing a

discretized 2D field with 15 variables. This input undergoes
three sets of convolution and pooling layers, each comprising a
2 × 2 convolutional layer with an ReLU activation function
(rectified linear unit), followed by a 2 × 2 max pooling layer. In
the subsequent step, the 17 × 5 × 64 tensor is flattened into a
5440-dimensional vector. Following this, two fully connected
dense layers are introduced, each with 512 units and ReLU
activation. To mitigate overfitting, a dropout layer is added
after each dense layer with a dropout coefficient set at 0.85.
Dropout involves randomly deactivating a portion (in this case,
85%) of the neurons within a layer, which has been proven to
be effective in preventing overfitting.
Buras et al.36 explored the potential for predicting the initial

ignition delay of highly diluted fuels within a high-pressure
plug flow reactor (PFR) by employing a well-trained CNN
model. Their approach involved designing a CNN model that
took one-dimensional profiles of chemical species such as OH,
HO2, CH2O, and CO2 as input and aimed to predict the first-
stage ignition delay as its output. This model incorporated
several hidden layers to enhance its predictive capabilities.
The CNN models offer a notable advantage in addressing

this issue as they make efficient use of fitting parameters,
consequently mitigating the likelihood of overfitting. In a CNN
convolutional layer, filters comprising a limited set of fitted
weights are employed to target specific regions within the input
data. These filters are systematically scanned (convolved)
across the input, resulting in the creation of fresh images or
profiles, known as feature maps.
Feature maps serve as indicators of the regions within the

input data where specific features are detected. Typically,
before proceeding to the subsequent convolution layer, it is a
common practice to perform pooling on the feature maps. This

Figure 5. Convolutional neural network used to predict hydrogen
ignition in a complex flow.34 Reproduced or adapted with permission
from.34 Copyright [2019] [Elsevier].

Figure 6. CNN architecture to find correlations between simulated flow reactor profiles and first-stage ignition delay for n-heptane at 600 K and
13.5 bar.36 Reproduced or adapted with permission from.36 Copyright [2020] [Elsevier].

Figure 7. Parity plot and histogram of CNN-derived correlation
between the explicitly simulated and predicted first-stage ignition
delay using OH/HO2 PFR training data.36 Reproduced or adapted
with permission from.36 Copyright [2020] [Elsevier].
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pooling operation involves amalgamating neighboring data
points within a specified pooling width, resulting in a
condensed feature map. These condensed feature maps then
serve as inputs to the next convolutional layer. Once the final
convolutional layer is reached, the ultimate collection of
feature maps needs to be transformed into a single label or
value (first-stage ignition delay) (Figure 6).
Figure 7 shows their results of predicted first-stage ignition

delay by using a CNN model versus simulated ones. The graph
is generated through a process involving ten distinct CNN
training fits, employing a 10-fold cross-validation approach.
The data sets were organized by their target ignition delay
times, dividing all PFR ignition delay simulations into ten
equally sized batches, arranged in ascending order of their first-
stage ignition delay values. Within each fold, one of these
batches was designated as the test data, while the remaining
nine batches were used for training purposes. To clarify, in the
first fold, the CNN model was trained on the least reactive 90%
of the simulations (those with the longest ignition delays) and
subsequently tested on predictions for the most reactive 10%
of the simulations.
In Fold 2, the CNN model was trained using data from the

least reactive 80% and the most reactive 10% of the
simulations, while the test set encompassed data falling
between 10% and 20% in terms of decreasing reactivity. This
graph illustrates that CNN-derived ignition delay predictions,
based on the PFR simulations, generally align well with the
simulated values, although the level of agreement does exhibit
some minor variations across the different fits. The most
demanding challenge emerged during extrapolation to the
longest ignition delays, as indicated by the largest deviation
from parity in Figure 8. Nevertheless, the overall distribution of
errors centers around 0%, with a root-mean-square (RMS)
error of just 10.2%. This level of error is comparable to the
typical uncertainties reported for ignition delays measured in
either shock tube or rapid compression machine (RCM)
experiments.
Yang et al.37 trained ANN and GCN (graph convolutional

network) models to predict ignition delay of different short-
chain fuels in a homogeneous reactor. A GCN model shares
similarities with the traditional CNN in its approach to feature
learning through examination of neighboring nodes. It
encompasses the aggregation of node vectors, forwarding the
outcome to a dense layer, and the application of nonlinearity
via an activation function. In essence, it comprises key
components: a graph convolutional step, a linear layer, and a
nonlinear activation function, collectively contributing to its
functionality.

To access to a large data set for training, they performed a
series of autoignition simulations at different temperatures
(800−2000 K) and pressures (10−600 kPa) by using
Cantera38 and the USC-II detailed mechanism.39 They
observed that the simple ANN model can predict ignition
delays for 4 carbon atom fuels with high accuracy, by only
incorporating a very small amount of data points. Then, they
established the transfer learning framework by merging the
neural network models (both ANN and GCN) trained on
different fuel data sets and applying transfer learning to a new
fuel data set. It is shown that transfer learning with GCN is
able to predict ignition delays with better prediction accuracy
while it also demonstrates lower stability and training speed
than transfer learning with the ANN model.
Li et al.40 conducted an experimental investigation involving

solid fuel combustion within a laminar flow reactor, employing
high-speed laser diagnostics. Their primary objective revolved
around advancing image analysis methodologies for precise
identification of ignition events in individual solid particles
using optical measurement data. Remarkably, they achieved
the visualization of the homogeneous ignition of individual
bituminous coal particles through the concurrent application of
planar laser-induced fluorescence of OH radicals (OH-LIF)
and diffuse backlight-illumination (DBI) techniques, all at a
rapid sampling rate of 10 kHz.
They constructed an extensive experimental data set

comprising a total of 1518 single-particle events, complete
with high-quality ground truth labels for ignition delay times.
This data set was meticulously curated to facilitate the training
of a Convolutional Neural Network (CNN) model. To process
the images, they employed deep residual learning techniques,
specifically based on the Residual Network (ResNet)41

architecture, progressively increasing the network depth with
variants featuring 18, 34, 50, and 101 layers. The primary
objective was to classify the OH-LIF images into two distinct
categories: ignition and no ignition.
To complement the ResNet models, the original grayscale

images underwent a transformation, being cropped and resized
into pseudocolor images with uniform dimensions of 224 ×
224 pixels, which served as input data. The initial convolu-
tional (conv) layer, irrespective of the network’s depth,
featured 64 filters measuring 7 × 7, with a stride of 2, and
was succeeded by a 3 × 3 max-pooling operation. Following
this, four sets of stacked convolutional layers (conv2/3/4/5)
were progressively integrated, with an expanding filter
dimension represented by N. Each group of layers comprised
multiple residual blocks interconnected by shortcut con-
nections. For the purpose of object detection, they harnessed

Figure 8. Schematic of the CNN architecture employed for predicting RON and MON numbers based on the profiles of 5 species. Initially, the 5
input species profiles undergo a convolution process, resulting in 8 feature maps. Throughout the convolution process, the number of channels
remains constant, while the pooling layer gradually reduces the size of the feature maps. In the final block of the CNN, all the feature maps are
flattened into a one-dimensional vector and connected to the subsequent Artificial Neural Network (ANN) along with inputs comprising T, P, and
τ.44 Reproduced or adapted with permission from.44 Copyright [2023] [Elsevier].
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scale-invariant feature pyramid networks (FPNs)42 in con-
junction with Faster R-CNN43 to identify objects across
various scales.
Their investigation revealed that the accuracy of traditional

image processing techniques relying on intensity thresholds is
highly sensitive to parameter choices. The adoption of deeper
networks and pretraining techniques offered marginal enhance-
ments in the training process and subsequently improved
ignition prediction. Their overall findings indicated that the
hierarchical feature extraction capabilities of convolutional
networks significantly aid in data analysis for high-speed optical
measurements. Moreover, these insights suggest that such
methods can be effectively transferred to other experiments
involving solid fuel combustion under similar boundary
conditions.
Wang et al.44 developed a multilayer convolutional neural

network for predicting octane number using time-resolved
information from species profiles in a constant volume
autoignition process. The CNN architecture, shown in Figure
8, consists of convolutional blocks with a 1D convolutional
layer, batch normalization, activation function, and pooling
layer. Each convolutional layer has a kernel size of 3 and
generates eight feature maps. The ReLU function is used as the
activation function to introduce nonlinearity.
As the convolution layer deepens, the feature map

transitions from local to semantic features, causing a gradual
reduction in size. Hence, each convolutional block concludes
with a pooling layer of size 3, reducing the feature map by two-
thirds. Positioned between the convolutional and activation
layers, batch normalization is pivotal in enhancing the training
speed and performance of convolutional neural networks.
Throughout the training, the convolutional layer parameters
are updated, leading to a shift in the input data distribution of
the subsequent network.
The researchers validated their approach by employing data

sets encompassing fuel blends and diverse single components,
including alkanes, esters, and alcohols, among others. The
findings illustrate the method’s capacity to achieve elevated
accuracy in predicting the Octane Number (ON), not only for
individual fuel constituents but also for blended fuels,
representing a mean absolute error of less than 2. The neural
network optimally employs parameter sharing, effectively
utilizing a limited set of parameters while extracting note-
worthy high-level semantic features. Furthermore, the method
exhibits the capability to make predictions for a wide range of
fuels, even those lacking information about physical parameters
and molecular structure in fuel blends.
Table 2 shows all published studies on the application of

ANNs and CNNs in ignition delay prediction in different
combustion processes. The goal of study and the main finding
of each study was presented.

4. CONCLUSION
In conclusion, this comprehensive review has highlighted the
significant potential of machine learning techniques, partic-
ularly artificial neural networks (ANNs) and convolutional
neural networks (CNNs), in advancing the prediction of the
ignition delay for various combustion processes. Through the
examination of multiple studies, it has been demonstrated that
these computational models can offer precise and rapid
predictions, thus providing a valuable tool for optimizing
engine design and fuel formulations. Potential applications of
this technique could be for optimizing engine design forT
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various fuel formulations, model-based control of an engine,
multifuel engine calibration, emission calibration development,
and fuel economy prediction.
The distinct advantages of ANNs and CNNs have been

showcased, with CNNs showing particular strength in handling
grid-like data, such as images (of the combustion chamber’s
inside, for example), and ANNs exhibiting versatility across a
broader range of applications. Moreover, the application of
machine learning extends beyond mere prediction, offering
insights into the complex dynamics of combustion phenomena
and contributing to more efficient, safe, and environmentally
friendly energy use. The convergence of combustion science
and machine learning opens new pathways for innovation in
energy technology with the potential to meet the growing
energy demands while addressing environmental concerns.
Future research may further refine these models, expand their
applicability, and integrate more diverse data sources to
continue improving the accuracy and efficiency of combustion
systems. As suggestions for future work, the community may
investigate the applicability of using machine learning for
prediction of the ignition delay in the NTC (negative
temperature coefficient) region, the ignition delay as a function
of the number of carbon atoms for different hydrocarbons, and
providing support for optical diagnostic methods.
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